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The Tutte polynomial of a graph G is a polynomial in two variables defined for every undirected graph contains information 
about how the graph is connected. In this paper a simple method is presented by which it is possible to calculate the Tutte 
polynomial of dendrimer nanostars.  
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1. Introduction 
 

Dendrimers are highly branched macromolecules. In a 

divergent synthesis of a dendrimer, one starts from the 

core and growths out to the periphery. In each repeated 

step, a number of monomers are added to the core, in a 

radial manner, in resulting quasi concentric shells, called 

generations. In a convergent synthesis, the periphery is 

first built up and next the branches are connected to the 

core. These rigorously tailored structures reach rather 

soon, between the thirds to tenth generation, depending on 

the number of connections of degree less than three 

between the branching points a spherical shape, which 

resembles that of a globular protein, after that the growth 

process stops. The stepwise growth of a dendrimer follows 

a mathematical progression. The size of dendrimers is in 

the nanometer scale. The endgroups can be functionalized, 

thus modifying their physico-chemical or biological 

properties [1]. The graph theoretical study of these 

macromolecules is the aim of this article [211].  

The Tutte polynomial of a graph G is a polynomial in 

two variables defined for every undirected graph contains 

information about how the graph is connected [1214]. To 

define we need some notions. The edge contraction G/uv 

of the graph G is the graph obtained by merging the 

vertices u and v and removing the edge uv. We write G − 

uv for the graph where the edge uv is merely removed. 

Then the Tutte polynomial is defined by the recurrence 

relation TG = TG − e + TG/e if e is neither a loop nor a bridge 

with base case TG(x,y) = x
i
y

j
 if G contains i bridges and j 

loops and no other edges. Especially, TG = 1 if G contains 

no edges. In this paper, we compute tute polynomial of 

Ns[n] Figs. 1  3. 

 

 
 

Fig. 1. The Molecular Graph of Ns[0]. 

 

 
 

Fig. 2. The Molecular Graph of Ns[1]. 

http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Polynomial
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Fig. 3. The 2-Dimentional Lattice of Ns[3]. 

 

 

The main result of this paper is the following theorem: 
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Throughout this article our notation is standard and 

taken mainly from the standard book of graph theory.  

 

 

2. Main results 
 

In this section the Tutte polynomial of Stoddart’s poly 

(ammonium) dendrimer, D[n], is computed. We first 

introduce some important notions. Suppose G is an 

undirected graph, E = E(G) and v is a vertex of G. The 

vertex v is reachable from another vertex u if there is a 

path in G connecting u and v. In this case we write vu. A 

single vertex is a path of length zero and so  is reflexive. 

Moreover, we can easily prove that  is symmetric and 

transitive. So  is an equivalence relation on V(G). The 

equivalence classes of  is called the connected 

components of G. One can define the Tutte polynomial as 

T(G,x,y) = AE(x  1)
c(A) – c(E)

 (y – 1)
c(A) + |A|  |V|

. Here, 

c(A) denotes the number of connected components of the 

graph (V,A).  

 

To compute the Tutte polynomial of D[n], we proceed 

inductively. To do this, we first compute T(D[0],x,y). 
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Proof. Suppose e[n], v[n], b[n] and h[n] denote the 

number of edges, vertices, bridges and hexagons of D[n], 

respectively. It is easy to see that b[n] = 3  2
n
 + b[n  1] 

and h[n] = 3  2
n1

 + h[n  1]. On the other hand, 

T(C6,x,y) = T(P6,x,y) + T(C5,x,y) = T(P6,x,y) + T(P5,x,y) + 

T(C4,x,y) = T(P6,x,y) + T(P5,x,y) + T(P4,x,y) + T(C3,x,y) = 
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calculation, one can see that  
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This implies that 
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We now apply Lemma 1 to deduce that: 
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